SOP: Cone Bioassay

May 2022
<table>
<thead>
<tr>
<th>Title</th>
<th>Cone Bioassay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document number</td>
<td>I2I-SOP-004</td>
</tr>
<tr>
<td>Version number</td>
<td>2</td>
</tr>
<tr>
<td>Date first published</td>
<td>30/10/2020</td>
</tr>
<tr>
<td>Date last revised</td>
<td>24/05/2022</td>
</tr>
</tbody>
</table>

Prepared by

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alex Wright</td>
<td>Author</td>
<td>Consultant to I2I</td>
</tr>
<tr>
<td>Graham Small</td>
<td>Author</td>
<td>IVCC</td>
</tr>
<tr>
<td>CREC</td>
<td>Contributor</td>
<td>CREC</td>
</tr>
<tr>
<td>CRSS</td>
<td>Contributor</td>
<td>CRSS</td>
</tr>
<tr>
<td>IHI</td>
<td>Contributor</td>
<td>IHI</td>
</tr>
<tr>
<td>KCMUCo</td>
<td>Contributor</td>
<td>KCMUCo</td>
</tr>
<tr>
<td>IRSS</td>
<td>Contributor</td>
<td>IRSS</td>
</tr>
<tr>
<td>Natalie Lissenden</td>
<td>Contributor</td>
<td>LSTM</td>
</tr>
<tr>
<td>Katherine Gleave</td>
<td>Contributor</td>
<td>LSTM</td>
</tr>
</tbody>
</table>

Timeline

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Reviewed by</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30/10/2020</td>
<td>Angus Spiers</td>
<td>I2I</td>
</tr>
<tr>
<td>2</td>
<td>24/05/2022</td>
<td>Angus Spiers, Rosemary Lees</td>
<td>I2I, LSTM</td>
</tr>
</tbody>
</table>

Version Control

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Updated by</th>
<th>Description of update(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>April – May 2022</td>
<td>Alex Wright, Natalie Lissenden</td>
<td>Purpose, materials & equipment, data collection</td>
</tr>
</tbody>
</table>

1 Historical versions of SOPs can be found on the I2I website (https://innovationtoimpact.org/)
Related documents

- I2I Best Practice SOP Library, 30 October 2020 (https://innovationtoimpact.org/)

1. Purpose (Owusu & Müller, 2016)

 The World Health Organization (WHO) cone bioassay plays an integral role in the evaluation of the efficacy of long-lasting insecticidal nets (LLINs) as well as insecticides used in indoor residual spraying. The test is used on a variety of treated substrates, such as pieces of bed nets, mud, cement and wood. Outcome measures include knock down (KD) and mortality. This SOP details the process for conducting a cone bioassay in laboratory LLIN testing.

2. Background

 Five, susceptible, non-blood-bed, 2-5-day old female *Anopheles* (species to be stated in the test report) mosquitoes are exposed to each piece of netting (25cm x 25cm) for three minutes under standard WHO cones held at an angle of 45°, after which they are held for 24 hours with access to sugar solution. Knock-down is recorded 60 minutes after exposure and mortality after 24 hours. One piece each from four different nets should be tested. Up to four cones at a time may be attached to a piece of netting, and five mosquitoes at one time should be exposed in a cone. This procedure should be repeated until a total of 50 mosquitoes have been exposed to each piece. Results should be reported for each net tested and for the four nets (4 pieces x 10 cone tests x 5 mosquitoes = 200 mosquitoes). Mosquitoes exposed to untreated net pieces are used as controls; they should be tested each day, just before and just after testing treated netting material. If the mortality in controls on any day is <10%, the results for that day should be adjusted by Abbott’s formula. If the mortality in controls is >10% on a given day, the results for that day are considered invalid and should be discarded. Bioassays should be carried out at 27 ± 2°C and 75 ± 10% relative humidity (RH).
The definitions of mortality and knock-down are those recommended by WHO (WHO, 2013). Mosquitoes are considered to be alive if they can both stand upright and fly in a coordinated manner. Mosquitoes that are moribund or dead are classified and recorded as knocked down at 60 minutes and as dead at 24 hours. A mosquito is moribund if it cannot stand (e.g. has one or two legs), cannot fly in a coordinated manner or takes off briefly but falls immediately. A mosquito is dead if it is immobile, cannot stand or shows no signs of life.

3. Materials & Equipment

a. Preparation of test room
 i. Paper cups
 ii. Marker pen
 iii. 10% bleach
 iv. Bench guard
 v. Masking tape
 vi. Humidifier
 vii. Heater

b. Pre-exposure period
 i. Aspirator
 ii. Incubator (optional)
 iii. Clock/ Timer
 iv. Environmental conditions log sheet

c. Preparation for assay
 i. Gloves
 ii. Lab coat
 iii. Untreated net pieces
 iv. Rubber bands
 v. Marker pen/label
 vi. Aspirators
 vii. Acrylic frame
viii. Stopwatch/timer
ix. Masking tape
x. Cup racks
xi. Aluminum foil
xii. Cone plug
xiii. Environmental conditions log sheet
d. Exposure
 i. 10% Glucose soaked cotton wool
e. Post-exposure
 i. +4°C refrigerator
 ii. Decontamination spray (according to protocol, active ingredient)
 iii. Biohazard bag

4. Procedure

1. Preparation of test room and materials
 a. Label paper cups with the protocol code, date of exposure, test item, exposure length, and replicate number
 b. Ensure the cones, aspirators, frame and acrylic cone holding panel have all been cleaned in 10% bleach and rinsed twice with clean water.
 c. Place a clean bench guard on top of the bench, and fix with masking tape.
 d. An hour before the acclimation period, switch on the humidifier and heater as necessary to reach conditions of 27 ± 2°C and 75 ± 10% RH.

2. Acclimation (pre-exposure) period
 a. Remove the glucose-soaked cotton wool from the mosquito cage approximately one hour before starting all testing process.
 b. Remove or reduce if possible, males from the cage to be used for testing.
3. **Preparation for the cone bioassay**
* (The setup of the test is done during the acclimation period) *

a. Put on gloves and lab coat
b. Cover the paper cups with the untreated net
c. Label paper cups (or disposable cups) with the protocol code, date of exposure, test item, exposure length, and replicate number.
d. Prepare the frames on the bench. Ensure there is one control frame.
e. Ensure the equipment is prepared and clean: Aspirators (1 for each active ingredient [AI], 1 for control), frame, stopwatch/timer, marker pens, masking tape, cup racks.
f. Net pieces to be tested should be packed individually in foil
g. Prepare all the net pieces. Starting with the control, unwrap the net piece from the foil and position the net piece on the frame. Tape the net in place or use bulldog clips to hold it in place. Label the area on the frame with the corresponding net piece ID or protocol ID.
h. Set up the frame at 45° using a raised platform.
i. Plug the cone with plastic bung.
j. Record the temperature, humidity, logger ID, and time acclimation period ended on the form.

4. **Exposure**

a. Aspirate five female mosquitoes from a cup into the negative control cone and quickly plug the cone with the plastic bung or cotton wool. Ensure that correctly labelled aspirator is used to avoid cross-contamination.

b. Once all of mosquitoes are in the first cone, start the timer.

c. Wait for one minute and aspirate five mosquitoes into the next cone.

d. Repeat this procedure until mosquitoes have been introduced into all cones, changing gloves and aspirator if exposing mosquitoes to different treatments.

e. Three minutes after mosquitoes have been introduced into the first cone, aspirate the mosquitoes back into the labelled paper cup (or disposable cup).

f. Write the time at which the exposure was ended for each cone and read the knock down 60 minutes later (see section 6 for knockdown assessment criteria).

g. Continue until all the samples have been tested

h. Place glucose-soaked wool on top of the cups after recording knockdown and place in racks.

5. **Post Exposure**

a. Return net pieces to corresponding aluminium foil, wrap and put in the +4°C refrigerator or designated storage following testing.

b. Decontaminate all insecticide-contaminated material according to the relevant SOP.

c. Dispose of bench guard in a biohazard bag.

6. **Recording knock down and mortality**
a. Knock down. Mosquitoes are scored as being alive if they can both stand upright and fly in a coordinated manner. Mosquitoes that are moribund or dead are classified and recorded as knocked down at 60 minutes.

b. Mortality. Mosquitoes that are moribund or dead are classified and recorded as dead at 24 hours (or later time point for treatments giving delayed mortality).

c. A mosquito is moribund if it cannot stand (e.g. has one or two legs), cannot fly in a coordinated manner or takes off briefly but falls immediately. A mosquito is dead if it is immobile, cannot stand or shows no sign of life.

5. Collection and reporting of data

f. Data analysis

a. If knockdown and mortality in the negative control is < 5%

\[
KD60 (\%) = \frac{\text{Total number of knocked down mosquitoes}}{\text{Total number of mosquitoes tested}} \times 100
\]

\[
\text{Observed mortality (\%)} = \frac{\text{Total number of dead mosquitoes}}{\text{Total number of mosquitoes tested}} \times 100
\]

b. If knockdown and mortality in the negative control is >5% but <10% correct using Abbott’s formula. Control mortalities of <5% require no correction.

Abbott’s formula:

\[
\text{Corrected mortality} = \frac{(\text{\% observed mortality} - \text{\% control mortality})}{(100 - \text{\% control mortality})} \times 100
\]

c. When mortality is >10%, the results should be discarded except for when there is delayed mortality when results may be retained up until the time at which control mortality exceeds 10%.

d. Ensure the following data is recorded in the data collection sheets.

a. Date of exposure
b. Protocol code

c. Test item ID

d. Test system species and strain

e. Age of mosquito

f. Abdominal status

g. Exposure conditions
 i. Day or night
 ii. Time length of test

h. Outcome measures
 i. Knock down time
 ii. Mortlity time

i. Environmental conditions for
 i. Acclimation
 1. Start and End
 a. Data logger ID number
 b. Temperature (C)
 c. Humidity (%)
 d. Time
 e. Initials of staff

 ii. Exposure
 1. Start and End
 a. Data logger ID number
 b. Temperature (C)
 c. Humidity (%)
 d. Time
 e. Initials of staff

 iii. Post-exposure holding
 1. 60 minutes, 24 hours, etc
 a. Data logger ID number
10

SOP: Cone Bioassay

b. Temperature (°C)
c. Humidity (%)
d. Time
e. Initials of staff

j. Scoring
 i. Test item code
 ii. Start time of exposure
 iii. Insecticide code
 iv. Replicate number
 v. Number of mosquitoes tested
 vi. 60 minute KD
 vii. 24 hour mortality (up to 72 hour mortality if needed)

k. Study Director signature and date

5. Glossary of terms

AI Active ingredient
KD Knock down
LLIN Long-lasting insecticidal net
RH Relative humidity
SOP Standard Operating Procedure
WHO World Health Organization
WHOPES World Health Organization Pesticide Evaluation Scheme

6. References

